Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa
نویسندگان
چکیده
The species Brassica rapa includes various vegetable crops. Production of these vegetable crops is usually impaired by heat stress. Some microRNAs (miRNAs) in Arabidopsis have been considered to mediate gene silencing in plant response to abiotic stress. However, it remains unknown whether or what miRNAs play a role in heat resistance of B. rapa. To identify genomewide conserved and novel miRNAs that are responsive to heat stress in B. rapa, we defined temperature thresholds of non-heading Chinese cabbage (B. rapa ssp. chinensis) and constructed small RNA libraries from the seedlings that had been exposed to high temperature (46 °C) for 1 h. By deep sequencing and data analysis, we selected a series of conserved and novel miRNAs that responded to heat stress. In total, Chinese cabbage shares at least 35 conserved miRNA families with Arabidopsis thaliana. Among them, five miRNA families were responsive to heat stress. Northern hybridization and real-time PCR showed that the conserved miRNAs bra-miR398a and bra-miR398b were heat-inhibitive and guided heat response of their target gene, BracCSD1; and bra-miR156h and bra-miR156g were heat-induced and its putative target BracSPL2 was down-regulated. According to the criteria of miRNA and miRNA* that form a duplex, 21 novel miRNAs belonging to 19 miRNA families were predicted. Of these, four were identified to be heat-responsive by Northern blotting and/or expression analysis of the putative targets. The two novel miRNAs bra-miR1885b.3 and bra-miR5718 negatively regulated their putative target genes. 5'-Rapid amplification of cDNA ends PCR indicated that three novel miRNAs cleaved the transcripts of their target genes where their precursors may have evolved from. These results broaden our perspective on the important role of miRNA in plant responses to heat.
منابع مشابه
Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.
Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes a...
متن کاملIdentification of Rapeseed MicroRNAs Involved in Early Stage Seed Germination under Salt and Drought Stresses
Drought and salinity are severe and wide-ranging abiotic stresses that substantially affect crop germination, development and productivity, and seed germination is the first critical step in plant growth and development. To comprehensively investigate small-RNA targets and improve our understanding of miRNA-mediated post-transcriptional regulation networks during Brassica napus seed imbibition ...
متن کاملComputational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملComparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis)
Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat s...
متن کاملGenome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis).
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetable crops grown worldwide, and various methods exist for selection, propagation, and cultivation. The entire Chinese cabbage genome has been sequenced, and the heat shock transcription factor family (Hsfs) has been found to play a central role in plant growth and development and in the response to biotic and abio...
متن کامل